
HOMESCAN: Scrutinizing Implementations of

Smart Home Integrations

Kulani Mahadewa∗, Kailong Wang∗, Guangdong Bai†, Ling Shi∗, Jin Song Dong∗† and Zhenkai Liang∗

National University of Singapore∗, Griffith University†

Abstract—A key feature of the booming smart home is the
integration of a wide assortment of technologies, including
various standards, proprietary communication protocols and
heterogeneous platforms. Due to customization, unsatisfied as-
sumptions and incompatibility in the integration, critical security
vulnerabilities are likely to be introduced by the integration.
Hence, this work addresses the security problems in smart
home systems from an integration perspective, as a complement
to numerous studies that focus on the analysis of individual
techniques. We propose HOMESCAN, an approach that examines
the security of the implementations of smart home systems. It
extracts the abstract specification of application-layer protocols
and internal behaviors of participants, so that it is able to conduct
an end-to-end security analysis against various attack models.
Applying HOMESCAN on three extensively-used smart home
systems, we have found twelve non-trivial security vulnerabilities,
which may lead to unauthorized remote control and credential
leakage.

I. INTRODUCTION

Enabled by the various intelligent Internet of Things (IoT)

techniques, the smart home paradigm has been significantly

changing the lifestyle of its users. New convenient facilities,

such as smart lighting systems, smart TVs and security alarm

systems, are becoming ubiquitous. Along with the booming

growth of smart home, security incidents have been continually

observed [1], [2]. Researchers have made efforts to address

security issues in smart home systems [3], [4], with focus on

several aspects, ranging from radio communications, network-

ing, operating systems, middleware, and protocols, to backend

cloud services.

In this work, we investigate security of smart home systems

from an integration perspective. Our motivation is out of such

a key observation—to realize a “smart” automated home, it is

essential that multiple subsystems are integrated. The controls

are typically initiated from the handheld devices such as smart

phones, transmitted over wireless channels such as Bluetooth,

ZigBee and Wi-Fi, forwarded by intermediate relays such as

gateways, and web-based service portals, and finally executed

by the end devices such as bulbs and locks. Due to the

involvement of such a wide assortment of technologies and

devices (usually from diverse manufacturers), it becomes chal-

lenging to coordinate them into a secure system. The challenge

may be attributed to at least the following two factors.

• Incompatibility. Since diverse standards are enforced,

there may be incompatibilities among the subsystems.

For example, in the Philips Hue system that we have

analyzed, the authentication between the bulb and the

hub is through the Touchlink Commissioning (TLC) over

ZigBee, while that between the hub and the control app

is through a customized authentication over Wi-Fi. Once

these three are integrated, due to the incompatibility

between the two mechanisms, there is no way for the bulb

to authenticate the control app. This allows a malicious

app which has infected the mobile phone that the control

app is installed on to acquire control over the bulb.

• Invalidated Assumptions. A developer or manufacturer

may make assumptions (e.g., trust relation, message for-

mat and correct sequence of API calls) when using the

interfaces provided by other parties. If the assumptions

are invalid, the interfaces may be used in an insecure way.

For example, in the same system above, the manufacturer

of the hub actually assumes the LAN is secure, whereas

this assumption may not be true if a malicious app has

been installed on the user’s mobile phone.

We present an approach named HOMESCAN, which scruti-

nizes security of the implementations of smart home systems.

It extracts the application-layer protocols and security-relevant

internal behaviors of each subsystem (or protocol participant)

from the implementations. Through this, it can derive a unified

abstraction of the end-to-end system to flatten the difference of

the protocols employed by each participant. The challenges yet

stem from the partial availability of the implementations. First,

the source code is seldom visible, although the executable

of the control app (from the app market), the firmware

extracted from devices, and SDKs provided by vendors, are

available for analysis. Second, the cryptographic protocols

are used among the participants, so that the communication

is blurred to us, even though we are able to capture the

exchanged traffic. To alleviate these challenges, HOMESCAN

uses a hybrid analysis including dynamic testing, whitebox
analysis and trace analysis. The dynamic testing executes

test cases, and captures communication traffic and execution

traces; the whitebox analysis identifies semantics by analyzing

the program that is available; the trace analysis infers the

association relation between a value of unknown semantics

and a participant, a session or a value whose semantics has

been identified.

HOMESCAN uses labeled transition systems (LTSs) [5] that

have been extensively used to model and reason various sys-

21

2018 23rd International Conference on Engineering of Complex Computer Systems (ICECCS)

978-1-5386-9341-4/18/$31.00 ©2018 IEEE
DOI 10.1109/ICECCS2018.2018.00011

tems to represent the extracted specification. An LTS describes

the execution of a particular participant, including its internal

behaviors (e.g., generating a nonce and validating a digital

signature) and communication behaviors (e.g., sending and

receiving a message). At this abstract level, the security rea-

soning can ignore the heterogeneity of underlying protocols,

but focus on the logic that is implemented by the system.

Using this abstraction, reasoning security properties of the

whole integration becomes effective, and we show that most

of the properties specific to the smart home systems can be

reduced to reachability checking.

It is obvious that obtaining the complete or sound specifi-

cation is almost infeasible. HOMESCAN focuses on extracting

as precise specification as possible, whereby it can identify

security issues. We prototype HOMESCAN and apply it to three

extensively-used smart home systems, including Philips Hue,

LIFX, and Chromecast. It manages to identify twelve security

vulnerabilities.

Contributions. To summarize, we make the following main

contributions in this paper.

• Specification Extraction Techniques. We propose hy-

brid techniques to extract specifications from the imple-

mentations of the smart home systems. Our evaluation

of real-world systems demonstrates that the extracted

specification is precise enough to identify significant

security issues.

• Vulnerability Identification Techniques. We have mod-

eled a set of practical attacks to facilitate the vulnerability

identification techniques based on LTS representations.

We reduce the vulnerability identification to traditional

reachability analysis on LTS.

• Practical Results. We apply HOMESCAN to real-world

systems and successfully identify twelve non-trivial secu-

rity vulnerabilities from them. The supporting materials

are published online for future research [6].

II. BACKGROUND AND OVERVIEW

In this section, we brief typical specification of smart home

systems from the integration perspective, and provide an

overview on the security properties and attack models in the

vulnerability identification of smart home systems.

ZigBee

Smart Device (SD)Control Point (CP) Hub

HTTP
Server

(HS)

ZigBee
RF Front-

End
(ZFE)

1
2

2

14

6

1
3

5
10

4
3

9

11 12
13

S1

S2

S3

(S1- Discovery Stage, S2- Authentication Stage, S3- Control Stage, - Broadcasting) ---

Wi-Fi

-

Fig. 1: A Smart Home System Containing a CP, Hub and a SD

A. Overview of a Smart Home System Specification

In order to facilitate our LTS construction, we abstract a

generic system architecture from several smart home systems

popular on the market, such as Samsung SmartThings [7]

and HomeGenie[8]. In our abstraction, a smart home system

consists of three subsystems, i.e., a control point (denoted

by CP) which interacts with the end users and issues the

controls, several smart devices (denoted by SD) which are

operable electronic end devices, and several relays (denoted

by hub) which bridge the communications. Covering from

configuration to control, the working procedure of the end-

to-end smart home system is divided into three stages, i.e.,

discovery, authentication and control.

Actions Inferred Components

s1

SD * BeaconRequest
ZFE * PanID, HubID, AssoPermit
SD * DeviceID, PanID

1 CP * UPnPMsearchRequest, CPIP
2 HS CP CPIP, ServerName, HubIP, HubID

s2

3 CP HS HubIP, nonce
4 HS CP CPIP , hash(nonce)
5 CP HS HubIP, hash(nonce), SearchLights
6 ZFE * PanID, ScanRequest
7 SD ZFE HubID, ScanResponse
8 ZFE SD DeviceID, {NetworkKey} Kmaster
9 SD ZFE HubID, JoinSuccessResponse
10 HS CP CPIP, SDJoinSuccess

s3

11 CP HS HubIP, hash(nonce), Command
12 ZFE SD DeviceID, {Command} KNetworkKey

13 SD ZFE HubID, ACK
14 HS CP CPIP, Success

1

2

3

S3

S1

S2

Fig. 2: Inferred Specification for the Ex-

ample in Fig. 1

In Fig. 1, we

show an example

of this architecture,

and its specification

which HOMESCAN

aims to extract is

listed in Fig. 2. In

this example, the

CP is an Android

app which supports

HTTP protocol over

Wi-Fi, and the SD

only supports the

ZigBee protocol.

Therefore, the hub
further includes an HTTP server (denoted by HS) and a ZigBee

front end (denoted by ZFE) to facilitate the communication

between the HTTP-based CP and ZigBee-based SD. In a

nutshell, the system works as follows.

• Discovery Stage (denoted by S1 in Fig. 1 and Fig. 2). The

CP searches for the hub and pairs with the HS (step � &

�). After searching existing ZigBee networks to join, the

SD discovers the network created by ZFE (step � -�).

• Authentication Stage (denoted by S2). The CP and the

SD authenticate themselves to the hub. To this end, the

CP and the HS use a customized authentication (step �-

�), while the SD and the ZFE use the TLC of ZigBee

Light Link (ZLL) [9] profile (step �-) after the CP

requests the hub to find and connect SDs in the vicinity

(step
). Once the SD is authenticated by the ZFE, the

HS sends a success response to the CP (step �).

• Control Stage (denoted by S3). The CP controls the

SD which is connected to the hub by sending control

commands to the HS (step 11©- 14©). Once receiving a

command, the hub converts it to a ZigBee packet and

sends it to the SD; upon the ACK received at the ZFE,

the HS sends a success response to the CP.

B. Security Properties and Attack Models

Security Properties. Our approach analyzes the security

properties including data security (i.e., data confidentiality

and integrity), association security, and access security (i.e.,

authentication and authorization), given that various work has

shown the importance of these security properties to IoT [10],

[11], [12]. These properties are detailed in Table I.

Attack Models. The common threats to a smart home system

are unauthorized access, manipulation by malicious partici-

2
22

TABLE I: Security Properties

Property Security Property Description

Data

Security

The property ensures that the data transmitted in a

smart home system should be delivered to the intended

participants without being revealed or altered by the

unauthorized participants.

Associa

-tion

Security

The association between the user/device behaviors and

the corresponding encrypted messages should not be

revealed by exploiting meta data of the encrypted mes-

sages such as the packet size, the message source/des-

tination addresses, etc.

Access

Security

The property ensures that all participants in a smart

home system can verify the identities of their commu-

nicating participants, and only the authorized partici-

pants are granted access to services and information.

pants [13], [14], and vulnerable settings of wireless commu-

nications [15]. Hence, we consider both malicious participants

and network attackers, whose capabilities are described in

Table II. Malicious participants are able to sabotage the access

security properties by pretending to be honest ones to collect

information (e.g., identities of other participants and session

keys) illegally or send unauthorized commands to honest

participants. Network attackers are able to eavesdrop, intercept

and modify messages within the local network (e.g., Wi-Fi and

ZigBee) in which the attacker resides or over the Internet.
TABLE II: Attack Models and Capabilities

Attack

Model

Attack Capability Description

Malicious

Participa

-nts

Malicious CPs are able to manipulate victim hubs
and SDs over the same local network or Internet by

sending unauthorized commands.

Malicious hubs are able to manipulate the victim SDs

in the vicinity by sending unauthorized commands.

Malicious SDs are able to capture the sensitive infor-

mation (e.g., identity and address of the hub or CP)

and possibly even take control of the victim hubs and

other SDs in the vicinity.

Network

Attacker

Eavesdropping. The attacker is able to obtain crucial

information (e.g., session keys and the identity of the

hub) by eavesdropping.

Intercepting and Modifying Control Activities. The

attacker is able to manipulate the system behavior by

either replaying or modifying control commands such

as ON/OFF of SDs, casting a video and changing light

color.

Intercepting and Modifying Administration Activ-
ities. The attacker is able to replay or modify the

administrative commands such as device authentica-

tion/removal/reset, possibly causing functional disrup-

tion including Denial of Service.

III. HOMESCAN OVERVIEW AND PREREQUISITES

In this section, we present an overview of HOMESCAN.

A. HOMESCAN Overview

HOMESCAN uses a set of techniques for specification ex-

traction and vulnerability identification. It takes the following

inputs.

• Implementation of the Smart Home System. A

runnable setup of the smart home system and a set of

programs (PS), including available source code, libraries,

and binaries of participants are input to the HOMESCAN.

• Test Cases. A set of test cases (TC) is required to trigger

the functionality of the smart home and at least one test

case is required to initialize trace capturing component.

A test case should include steps to discover, authenticate

and control of the system. Each test case corresponds to

a configuration of the system. Configurations refer to the

participants (e.g., CP, SD and hub) of the system and the

different users (e.g., admin, general user and guest).

• Initial Knowledge. Initial knowledge (IK) is represented

as a 3-tuple (P,CH,KV), where P is the set of partici-

pants of the input system; CH is the set of channels used

for communication among participants; KV is the set of

knowledge required to execute the TC.

As shown in Fig. 3, HOMESCAN includes three major

components including trace capturing and pre-processing,

specification extraction and flaw identification.

HTTP

Dynamic Analysis Tools
& Sniffing HardwareImplementation

Initial Knowledge
Test Cases (TC)

ZigBee

Wi-Fi

BLE

Other

Arrange
Traces

Extract Values

Input

Trace Capturing & Pre-processing

Traces

TRSet
& EL

Exhaustive Search

Type Propergation

Whitebox

Diff Analysis

PI List

LTS
List

Security
Properties

Attack
Models

Specification Extraction

Vulnerabilites

Flaw Identification

Output

Security
Analyst

races

mutation

updateTRSet TC.next 1

2

1

3

1

Fig. 3: Overview of HOMESCAN

Trace Capturing. The first step of the HOMESCAN is to

capture the trace of the system under analysis by executing

the initial test case. It captures two types of traces, i.e., traffic

traces and execution logs. HOMESCAN uses existing sniffers

to capture the traffic traces, and records the execution of

the participants, whenever instrumentation can be done. In

addition, HOMESCAN generates new traces by mutating the

values (e.g., HTTP header values or HTTP parameters) from

the captured traces, after executing each test case.
Pre-Processing. Pre-processing takes the set of captured traces

as input and aims to generate a set of transactions (defined

soon). A captured trace is a sequence of messages, contain-

ing the exchanged data between two or more participants.

HOMESCAN first merges the traces in chronological order

and then extracts the values from the traces. Based on the

underlying protocols, HOMESCAN extracts data referring to

their standard message formats. The extraction is done using

keyword (e.g.,“host” in an HTTP request) searching, pattern

matching and string splitting with delimiters (e.g.,“&”).
Specification Extraction. The objective of this step is to gen-

erate LTS representation of the system, given the transactions

generated from the pre-processing component. We propose a

3
23

hybrid extraction technique including whitebox analysis and

trace analysis for the specification extraction. The extracted

specification is represented by LTS. In Section IV, we detail

the specification extraction component.

Flaw Identification. In this step, we propose a verification

algorithm to check IoT-specific security properties of the LTS

representation against predefined attack models. Essentially,

the verification algorithm is a reachability analysis. It can

apply any of classic searching algorithms (e.g., DFS and BFS)

on the generated LTS to search the reachability of a bad state

wherein the security property is violated. In Section V, we

detail our verification algorithm.

B. Prerequisites

In order to bridge the semantic gap between the low-level

traces and the high-level LTS, we introduce several interme-

diate data structures to maintain the information required to

generate an LTS.

Transactions. A transaction (TR) is a preliminary abstraction

of one round of information exchange. We represent it as

a 5-tuple (id, se,R,EVSet,BR), where id is the transaction

ID, se ∈ P is the sender, R ⊂ P is the set of receivers,

and EVSet = {EV1, EV2, ...,EVα} is the set of values (total

number α) extracted from the message exchanged in the TR.

Each EVi is a 3-tuple (v, t, id) where v is the value, t is its type,

and id is the value ID. The transaction also includes branch

information (BR), which is defined soon.

To represent the output of the pre-processing component,

we propose a transaction set denoted by TRSet = {TR1,
TR2, ..., TRβ} where β is the total number of transactions.

Additionally, the ordered execution logs are output as a

sequence EL.

Branch Information. Each transaction TR includes a branch

set (denoted by BR), which is a set of transaction IDs that rep-

resent the transactions branching from the current transaction.

There are three types of branches, i.e., options, self-recursions,

and sequence-recursions. An option branch is either labeled as

an option in the test case, resulted from test case mutation or

resulted from configuration changes. HOMESCAN identifies

self-recursions or sequence-recursions when data of a single

transaction or data of a sequence of transactions are repeated

in the trace respectively.

Types. For each extracted value EV ∈ ⋃
EVSeti (1 ≤ i ≤ β),

HOMESCAN attempts to identify a type (t) during the specifi-

cation extraction. HOMESCAN defines two categories of types,

i.e., primitive and domain-specific. The primitive type can be

an integer, boolean, or string. The domain-specific type can

be any of network address (used in ZigBee-like protocols), IP

address, MAC address, username, password, encryption key,

etc. During pre-processing, HOMESCAN assigns a primitive

type to EV.t and updates it to a domain-specific type (which

is more precise) when more information is inferred.

The domain-specific types are formalized as terms (denoted

by T). Terms are categorized into three subsets, i.e., Constants
(denoted by C), Functions (denoted by F), and Variables
(denoted by V), such that T = C ∪ F ∪ V . Ground terms are

TABLE III: Function Terms

Function

Term (F)

Definitions Meaning

senc(msg, k) msg ∈ T; symmetric key k ∈ T ciphertext

hash(msg) msg ∈ T hash value

terms that only contain constants and functions. Variables are

terms that are not ground. Table III lists part of the Functions
terms use by HOMESCAN, and the full list is included in the

technical report [6].

Actions. A label of an LTS is an action which can be either a

communication or a local action. The actions which send and

receive messages with other participants are communication

actions, and the actions that execute local behaviors of each

participant are local actions. Table IV lists several actions used

by HOMESCAN.
TABLE IV: Communication and Local Actions

Type Action Definitions Meaning

Comm.
send(ch,msg) ch ∈ C; msg ∈ T sending a message

via channel ch
receive(ch, x) ch ∈ C; x ∈ V receiving a message

and storing in x

Local
newnonce(x) variable x ∈ V generating a nonce

and storing in x
newskey(x) variable x ∈ V generating & storing

a symmetry key

Protocol Information. Protocol Information (denoted by PI)

is defined during the specification extraction. A PI is a 5-tuple

(msg,ACSeq, ch, lc,BR), where PI.msg is a concatenation of

terms representing the message transmitted by the correspond-

ing TR, and PI.ACSeq = 〈AC1,AC2, ...,ACγ〉 is a sequence of

action information where γ is the total number of actions. An

action information ACi is a 3-tuple (u, a,X) where u(∈ P) is

the participant who performed the action, a is the name of

action and X is a set of terms taken as parameters to a. PI.ch
is the communication channel. Further, if the message PI.msg
needs to be transmitted between two sub-components within

a device, which acts on different protocols, the algorithm

introduces local communication actions (e.g., between HS and

ZFE of hub shown by the broken lines in Fig.1). PI.lc ∈ P is

the receiver (lc 	∈ TR.R) when local communication between

two sub-components exists. PI.BR is the branch information.

Parameterized Labeled Transition System. A traditional

labeled transition system (LTS) is a 4-tuple L = (S, s0,A,→)
where S is a set of states (locations); s0 ∈ S is the initial state;

A is a set of actions; →⊆ S × A × S is a labeled transition

relation. We extend the LTS with parameters to differentiate

the instances of the same behavior pattern to facilitate the

attacker modeling. For example, we use the parameter HubID′

to represent the identity of the malicious hub compared with

the HubID for the benign hub.

IV. SPECIFICATION EXTRACTION

The goal of specification extraction is to generate a rep-

resentation of system integration. One challenge that can

be foreseen is the gap between the execution traces (to be

precise, the transactions after pre-processing) and the target

LTS. To bridge the gap, we design a two-step extraction

4
24

input : (TRSet,PS,EL, IK, TC)

output: A List PIL = [PI1,PI2, ...,PIδ] where δ = β; Each

transaction in TRSet is mapped to a PI.
1 F = {f1, f2, ..., fη} where η is the number of selected hash,

cryptography and encoding/decoding functions.;

2 g : GEVSet × P(TRSet) is relation indicates the transactions which a

value appears.;

3 TRSetnew ← TRSet, TRSetold ← TRSet;
4 do
5 TRSet ← TRSetnew;

6 GEVSet =
⋃

EVSeti(1 ≤ i ≤ β)// global set of EVSet.;
7 g ← Grouping(TRSet) ;

8 GEVSet ← WB(GEVSet,PS,EL, IK);
9 PIL ← Propagation(GEVSet, g);

10 GEVSet ← ES(GEVSet,F, IK);
11 PIL ← Propagation(GEVSet, g);
12 GEVSet ← DA(GEVSet,PIL, TRSet, TRSetold, IK);
13 PIL ← Propagation(GEVSet, g);
14 TRSetold ← TRSet;
15 TRSetnew ← updateTRSet(TC.next) ;

16 while TRSetnew �= TRSet;
17 return PIL;

Algorithm 1: PI Inference Algorithm

approach, which first extracts PIs from the transactions, and

then transforms the PIs into LTS representations.

A. Inference of Protocol Information

Given the transactions generated from trace processing,

HOMESCAN uses several analysis techniques to infer the PIs

using Algorithm 1. It takes a 5-tuple (TRSet,PS,EL, IK, TC)
as input, where TRSet is the set of transactions; PS is the set

of programs; EL is the set of execution logs; IK is the set

of initial knowledge; TC is the set of test cases. The output

of the algorithm is a list of inferred PI (PIL), each of which

correlates with one transaction. The algorithm executes the

next test case (TC.next at line 15) and iteratively identifies

new semantics until no new information can be found from the

input resources. In each next iteration, the TRSetnew includes

new values and new branch information (BR) corresponding to

the new configuration specified in the TC.next. HOMESCAN

infers the types of new values using the techniques we detail

in the remaining of this section.

Whitebox Analysis. HOMESCAN uses WB(GEVSet,PS,
EL, IK) (line 8) to infer each extracted value EV.v of trans-

action TR. It identifies type information of a value EV.v ∈
GEVSet and related local behaviors, and branch information

by analyzing how v is generated or processed in the given

program (∈ PS).

First, HOMESCAN identifies the code snippet for analysis

from the input PS. It uses the following two approaches for

code snippet identification.

• If the source code is runnable, HOMESCAN logs API calls

which send or receive the message of transaction TR (e.g.,

execute() of DefaultHttpClient.class with

Java API of Apache) in the program.

• If only the executable files are available, HOMESCAN

recovers the code using off-the-shelf reverse-engineering

tools. Next, it scans the recovered code for existence of

strings against a dictionary of strings. This dictionary is

constructed with the extracted strings from the network

trace corresponding to the message of TR. HOMESCAN

confirms the code snippet by instrumenting the recovered

code to obtain dynamic debug information, while execut-

ing the test case which triggers TR.

Next, HOMESCAN identifies associations among vari-

ables in the code snippet, for type information recog-

nition of v. To this end, it uses data flow analysis

techniques, including both backward and forward flow

analysis. HOMESCAN assigns Constant terms to v if

it is associated with a constant given as prior knowl-

edge (e.g., IP address, cryptographic key) in the program.

p p
POST /api HTTP/1.1
Host: http://192.168.0.100/
mytag=s23490..fauisdf
private static String DEVICE_ID = “s23490..f”;
public class Test {

public static void send (){
String x = DEVICE_ID;
String value = genValue(x);
params.setParameter(“mytag”,value);
request.setParams(params);
httpClient.execute(request);

}private static String genValue(String s) {
Random noGen = new Random();
String randomString = noGen.nextString();
return s + randomString; }}

Dst: 192.168.0.101 HTTP/1.1 200 OK
Content-type: application/json
{"success",{“token":"ebb66d40a4817244594866
2e2840fc3fb70767f0"}}

A

3

4

Fig. 4: Part of Captured HTTP Traces

and Part of CP Source Code for the

System in Fig.1

It assigns Variable
terms if v is associated

with a random value

identified by the use of

corresponding API (e.g.,

java.util.Random)

calls. HOMESCAN

assigns Function terms

if v is associated

with values generated

by security sensitive

functions (e.g.,

encryption, decryption

and signature) which

are identified by the

cryptographic API (e.g.,

javax.crypto.KeyGenerator) calls. In addition,

HOMESCAN records local actions related to the generation or

processing of the value v. For example, if a new symmetric

encryption key is generated, HOMESCAN records a local

action newskey(x) (listed in Table IV). For example, consider

the message 3© in Fig. 4, which is transmitted by TR 3© in

Fig. 2, and generated by the code snippet A listed in Fig. 4. The

TR3=(3,CP,HS,{(s23490..fauisdf , String, 0)}, ∅) has one

extracted value (EV1), which is an HTTP request parameter.

HOMESCAN infers EV1.v as terms (DeviceID,nonce1).

The corresponding PI3 is (msg=(DeviceID, nonce1),
ACSeq=〈(CP,newnonce,{nonce1}),(CP, send,{msg}), (HS, r-

ecieve,{msg})〉, ch=wifi, lc= −, BR=∅).

HOMESCAN identifies the branch information resulted from

configuration changes in the smart home system. For example,

different privileges may be assigned to different user (e.g.,

general and guest users) or CP (e.g., mobile or desktop

app) configurations. With this approach, HOMESCAN uncovers

control flows (e.g., if-else and case-switch) in a given program,

and utilizes all input resources (e.g., mobile and desktop CP

source code) during PI inference. To formalize the configura-

tions, we assume the finite configuration set C={C1,C2, ...,Ci

, ...,Cλ} where λ is the number of configurations that can be

changed (e.g., C ={Cuser,CCP} where Cuser={general, guest}
and CCP={mobile, desktop}). As an example, in the LIFX

system that we studied, the desktop app (CP) allows to control

the SD over SD’s open Wi-Fi hotspot whilst the mobile app

forces to setup the SD with the home Wi-Fi before starting the

5
25

control. Hence, HOMESCAN records the control (over open

Wi-Fi) and setup (with home Wi-Fi) actions as two option-

branches in the PI corresponding to the discovery success

transaction.

Exhaustive Search. HomeScan uses exhaustive search to

identify the type of a value with respect to a known function

applied on a subset of extracted values. Hence, in this search,

a finite set of existing functions are executed on all extracted

values to check whether the values of unknown types can be

generated. As shown in Algorithm 1, the GEVSet is input

into the ES(GEVSet,F, IK) with F a set of existing func-

tions (e.g., MD5, SHA-1 and Base64) and IK. For example,

consider v=“ebb66d...0767f0” in our running example (� in

Fig. 4). HOMESCAN performs all the existing hash functions

on the values it has collected in GEVSet. Once it finds that

SHA1(nonce1) has the same value, it can infer that the type

of this value is a hash value over nonce1.

Differential Analysis. HOMESCAN uses DA(GEVSet,PIL,
TRSet, TRSetold, IK) to infer the types based on the associ-

ations from two categories of changes, i.e., configurations and

control commands. HOMESCAN identifies the association for

the difference of the v in TRSetold and TRSet for the value with

identity EV.id ∈ TR. Further, HOMESCAN triggers the trace

capturing component to re-execute a particular test case during

an analysis to assure the consistency of values EVSet ∈ TR.

Configuration Changes. In our generic architecture, the

configuration C={Chub,CSD,CCP} is a set of participants.

Hence, for example, HOMESCAN can substitute the hub with

other hubs using the same interface (e.g., the communication

protocol), i.e., Chub={hub1, hub2, ..., hubμ} where μ indicates

the number of the hubs under the control of HOMESCAN, to

check the difference of the target EV.v against the change

of the hub. For a value EV.v whose domain-specific type is

unknown, HOMESCAN infers its type (t) as follows.

• If Ci and EV.v always change together, then they are

likely correlated, e.g., HubID in the running example.

• If EV.v always changes in every execution, then it is

likely a session-specific random nonce, e.g., nonce.

• If EV.v keeps constant, then it is likely a protocol-specific

value, e.g., UPnPMsearchRequest.

Control Command Changes. During the control stage, the

commands sent to the SD may be encrypted. HOMESCAN

exploits the association between the control commands and

the meta-data of the encrypted messages by using differential

analysis, to infer the types (e.g., ON/OFF/color-change com-

mand) of the encrypted messages. According to the connection

through which a control command can be sent to the SD,

HOMESCAN uses the following approaches to infer its type.

• Persistent Connection. Typically, the heartbeats are re-

quired in order to maintain a persistent connection. In

this scenario, the packets including the commands may be

inundated by the heartbeat packets. To remove the packets

of the heartbeat from the trace, HOMESCAN captures

the packets when no command is issued by the CP, and

labels it as the heartbeat. This enables HOMESCAN to

input : PIL
output: A List LTSL = [LTS1, LTS2, ..., LTSσ] where σ =| P |.

Each participant in P is mapped to an LTS
1 for p ∈ P do
2 srcp ← s0, dstp ← null, LTSp = (srcp, {srcp},∅,∅);
3 foreach PIq ∈ PIL do sq

p ← null;
4 end
5 for PIq ∈ PIL do
6 PIq.ACSeq�CreateLCActions(PIq.msg, PIq.lc);
7 uch ← UniqueCH(PIq.ch);
8 for ac ∈ PIq.ACSeq do
9 p = ac.u, l ← CreateLabel(ac, uch);

10 dstp ← GenState(ac);
11 if (sq

p �= null) then srcp ← sq
p;

12 LTSp.A ← LTSp.A ∨ {l}, LTSp.S ← LTSp.S ∨ {dstp};

13 LTSp.Tr ← LTSp.Tr ∨ {srcp, l, dstp};

14 srcp ← dstp, sq
p ← null;

15 for TR.id ∈ BR do
16 if (q < TR.id) then sTR.id

p ← dstp;

17 else if (q = TR.id) then
18 LTSp.Tr ← LTSp.Tr ∨ {dstp, l, dstp};

19 else if (q > TR.id) then
20 exdstp ← GenState(AC1 ∈ PITR.id.ACSeq);
21 LTSp.Tr ← LTSp.Tr ∨ {dstp, l, exdstp};

22 end
23 LTSL ← LTSp
24 end
25 end
26 return LTSL;

Algorithm 2: LTS Representation Algorithm

remove the heartbeat packets from the trace and infers

the remaining packets as the control command(s).

• Non-persistent Connection. In non-persistent connection,

a handshake is often used to establish the connection

before a control command is sent. Therefore, given a trace

of control command execution, HOMESCAN identifies

the packets on the trace corresponding to three differ-

ent stages in a handshake based protocol (〈connection,
command, disconnection〉). To achieve this, HOMESCAN

reruns test cases for different control commands. The

packets common in all runs are considered to be relevant

to connection and disconnection stages. The remaining

packets are inferred as the command data packets.

Type Propagation. HOMESCAN uses Propagation(GEVSet,
g) to propagate the type of a particular value to its other

occurrences. The rationale is that in security protocols, a data

item typically appears in multiple steps (as shown with red

arrows in Fig. 2). HOMESCAN exploits this feature to propa-

gate inferred information in different transactions. To do the

propagation, HOMESCAN generates groups GEVSet (line 4 in

Algorithm 1) to track all occurrences of each value throughout

all transactions. Later after each analysis, the updated GEVSet
and the groups are input to propagation component for the PI
generation.

B. LTS Generation

After extracting the PIs, HOMESCAN translates them into

the LTS representations. Algorithm 2 shows our approach. It

takes the PIL (output of Algorithm 1) as input and generates

a list of LTSs. It begins with initializing an LTSp for each

participant p ∈ P with the initial state (s0), the set of states

6
26

(S), the set of actions (A), and the set of transitions (Tr) in

a tuple (s0, {s0},∅,∅) (lines 1-4). Then it iterates through

the PIL and transforms each PI into LTS transitions. First, it

extends the PI.ACSeq, if a private communication exists (line

6). Next, it creates a unique channel (line 7) before creating an

action label (line 9). Once the source and destination states and

labels are created (lines 9-11), it updates the LTS components

of participant p identified at line 9. If the PI has branch

information, it either records the source state of options (line

16), adds self-recursions (line 18), adds sequence-recursions,

or merges branches (lines 20-21). Below, we detail the LTS

generation.

States. A transition involves two states. Its source state is

denoted by srcp, while the destination state is denoted by dstp.

In addition, HOMESCAN uses state sq
p to track the srcp of a

branch, where q is the transaction ID (TR.id). The dstp is given

by the function GenState (line 10). If the input ac represents

a new action, GenState outputs a new dstp. If the action has

been mapped to a dstp by the function before, the function

outputs the existing dstp. Moreover, the srcp of the immediate

transition is the dstp of the current transition, when it is not a

branch (line 14).

Actions and Transitions. During the iterations through PIL,

the information in each PIq is used to create labels (actions).

The PIq.ACSeq states the action information with their se-

quence. The algorithm creates labels for actions in the stated

order (e.g., 〈AC1,AC2,AC3,AC4〉 where AC1 and AC2 are

local actions conducted by the sender, AC3 = (se, send,msg)
is an action of message sending, and AC4 = (ri ∈ R, receive,
msg) is an action of message receiving). Further, HOMESCAN

uses the CreateLCActions function to add information of the

local sending and local receiving actions to PIq.ACSeq (e.g.,

PIq.ACSeq�〈(ri ∈ R, send,msg), (lc, receive,msg)〉 (line 6).

Each label is created using the function CreateLabel (line

9). The input to the function, i.e., ac, has information about

action (a and X). If ac is a local action, then a ∈ {newnonce,

newkey, newkeypair, executeCommand} and X ∈ T . If ac is a

communication action, then a ∈ {send, receive} and X = msg.

The input uch generated using the UniqueCH function is used

to send/receive the msg via a unique channel (line 7). If ac is

a local communication, then the CreateLabel function uses a

unique private channel to transmit the msg. Once the label and

the next state are ready, LTSp is updated such that srcp
l→ dstp

is added (lines 12-13).

Branches. If the PIq includes information about branches (rep-

resented by TR.id ∈ BR), it is analyzed from line 15 to line

22. Fig. 5 shows different types of branches in an LTS. If

TR.id of the branch is greater than that of the current PI, it

is an option. Hence, current dstp is tracked using sTR.id
p (line

16). After it is set, sTR.id
p is taken as the srcp (line 11) in

the next iteration. If the TR.id of the branch is the same as

that of PI, this branch is a self-recursion. It is represented as

an edge from dstp to dstp (line 18). Otherwise, the PITR.id

is already processed. Hence, the dstp of the first action

(as stated in sequence PITR.id.ACSeq) of the branch exists.

Fig. 5: Types of Branches in an LTS

The GenState function

returns that existing

state as exdstp. HOME-

SCAN adds a transition

from the current state

dstp to exdstp (lines

20-21). This is called

a branch merge. If the

first action of the branch exists in the current path (root to the

srcp), this branch is a sequence-recursion. Hence, HOMESCAN

merges the current and existing srcp states. After all actions

are processed, the LTS representation is generated.

V. FLAW IDENTIFICATION

After the specification extraction, the LTS representation

is generated to model the behaviors of the participants and

their communications. We can further analyze the security

properties of the extracted protocol by verifying the generated

LTS model against the attack models.

Fig. 6: LTS Representation for the Malicious CP and Wi-Fi Attacker

In HOMESCAN, the behavior of an attacker is modeled as

an LTS Latt = (S, s0, Aatt,→att), where Aatt is a set of actions

performed by the attacker. In Fig. 6, we illustrate the behaviors

of the malicious participants and the network attacker using

the examples of the malicious CP and the Wi-Fi network

attacker in the running example. Note that we assume the

attacker is able to check and receive a specific message which

is modeled as a guard on the received messages (denoted by

“=”). The malicious CP pretends to be an honest one in the

same network with a different IP address CPIP’. It sends out

its newly generated nonce n′ (state att m2), trying to receive

an authenticated user ID hash(n′) (we store this value in a

variable q in the LTS in Fig. 6) from the hub (state att m4).

Once successful, the malicious CP is able to find the SDs

within the network it has joined and then controls them by

sending its own malicious command command’ (state att m7).

The Wi-Fi network attacker resides between the CP and the

HS. It is able to intercept and replace the command sent from

the honest CP with command1’ (state att n1).

Given the extracted LTS models of both participants and

attackers, HOMESCAN generates the execution of the whole

smart home system defined in Definition 1.

Definition 1 (System LTS Generation) Let Li = (Si, s0i ,A,
→i) be the model of participant i, Latt = (Satt, s0att ,Aatt,→att)
be the attack model, NSatt be the attacker’s knowledge set,

7
27

and Ac be the set of sending As and receiving actions Ar

(As,Ar ⊆ Ac ⊆ A). The model of the whole system is an
LTS (S, s0,A′,→), where S ⊆ S1 × · · · Sn × (Satt × PT),
initial state s0 = (s01 , · · · , s0n , (s0att ,∅)), A′ = A ∪ Aatt ∪ Asr,
Asr = (As×Ar) is a set of sending and receiving action pairs
denoting synchronization, and →⊆ S×A′×S is the transition
relation.

Due to the page limitation, we list part of our LTS gener-

ation rules in Fig. 7, and the full list can be found in our

technical report [6]. Here we intuitively introduce it. Rule

comm denotes a communication action between two honest

participants. Rules att rec and att send represent the attacker’s

capabilities. att rec captures the message sent from an honest

participant and those generated by the attacker (attacker can

apply a cryptographic function to the captured message and

generate new terms using function Upd). These new terms are

added to the set NSatt. att send sends out a fake simulated

message to pretend as an honest participant. Rule att send all
represents the network attacker’s capability that it can intercept

the communication between honest participants and thereafter

randomly send a message from its knowledge set NSatt to the

intercepted honest receiver.
Notice that we define an additional sending action

send(ch, ∀) to represent the network attacker’s capability

of sending any message from the attacker’s knowledge set

NSatt ⊂ K where the knowledge set K is a set of terms.

According to Definition 2, an attacker has the capability of

updating his knowledge set NSatt by applying the attacker

knowledge’s set update function Upd defined as follows.

Definition 2 (Attacker Knowledge Set Update) Let NSatt

and NS′
att be the input and output of the attacker’s knowledge

update function Upd such that NS′
att ← Upd(NSatt). Let m, n,

pk, sk ∈ T where pk and sk represent a public-private key
pair such that:

NS′
att ← NSatt ∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{senc(m, n)}, m, n ∈ NSatt

{m}, senc(m, n), n ∈ NSatt

{aenc(m, pk)}, m, pk ∈ NSatt

{m}, aenc(m, pk), sk ∈ NSatt

{sign(m, sk)}, m, sk ∈ NSatt

{m}, sign(m, sk), pk ∈ NSatt

{hash(m)}, m ∈ NSatt

In order to verify the security properties, HOMESCAN

applies the reachability analysis to the generated execution of

the smart home systems, using the classical algorithms such

as BFS and DFS. It determines whether a vulnerability exists

by searching whether a particular state (referred to bad state
hereinafter) can be reached in the whole system. For example,

in order to determine if the CP can have unauthorized control

of the hub and the SD, we can query if the system execution in

the running example can reach state att m6 from state att m7
in Fig. 6. Alternatively, we can also query the existence of a

particular set of terms in the attacker’s knowledge set NSatt

to determine if the attacker has enough information to launch

an attack. For example, we can query if the set {command′,
hash(n′)} exists in the attacker’s knowledge set in Fig. 6 to

determine if the malicious CP can have unauthorized control

of the hub and the SD.

si
Send(ch,M)−−−−−−→i s′i , sj

Receive(ch,x)−−−−−−−→j s′j , ai = Send(ch,M), aj = Receive(ch, x)
[comm]

(s1, · · · , si, · · · , sj, · · · sn, (satt,NSatt))
(ai,aj[M/x])−−−−−−−→ (s1, · · · , s′i , · · · , s′j , · · · sn, (satt,NSatt))

si
Send(ch,M)−−−−−−→i s′i , satt

Receive(ch,x)−−−−−−−→att s′att, ai = Send(ch,M), aatt = Receive(ch, x)
[att rec]

(s1, · · · , si, · · · , sn, (satt,NSatt))
(ai,aatt[M/x])−−−−−−−→ (s1, · · · , s′i , · · · , sn, (s′att,Upd(NSatt ∪ {M})))

si
Receive(ch,x)−−−−−−−→i s′i , satt

Send(ch,M)−−−−−−→att s′att, ai = Receive(ch, x), aatt = Send(ch,M)
[att send]

(s1, · · · , si, · · · , sn, (satt,NSatt))
(aatt,ai[M/x])−−−−−−−→ (s1, · · · , s′i , · · · , sn, (s′att,NSatt))

si
Receive(ch,x)−−−−−−−→i s′i , satt

Send(ch,∀)−−−−−−→att s′att, ai = Receive(ch, x), ∃Mi ∈ NSatt • aatt = Send(ch,Mi)
[att send all]

(s1, · · · , si, · · · , sn, (satt,NSatt))
(aatt,ai[Mi/x])−−−−−−−−→→(s1, · · · , s′i , · · · , sn, (s′att,NSatt))

Fig. 7: Execution Rules where x, x−1 ∈ V,M ∈ T and ch ∈ C

VI. EVALUATION

In this section, we present our experiment setup and overall

results. The supporting materials are published online [6].

A. Subjects of Our Evaluation

Philips Hue. Philips Hue is a smart lighting system produced

by Philips and is claimed to be the world’s most popular

smart lighting system [16]. The components and the working

process of this system are similar to the example discussed

in Section II-A. The detailed description is available in the

technical report [6].

LIFX. LIFX smart lighting system comprises a CP and a SD

(i.e., the smart bulb). The SD is Wi-Fi enabled and initially

provides an open Wi-Fi hotspot. In the discovery stage, the

CP joins the SD’s hotspot and discovers the configurations of

the SD by broadcasting a UDP packet. In the authentication

stage, the CP sends credentials of the home Wi-Fi to the SD

over SD’s hotspot. With the received credentials, the SD joins

the home Wi-Fi. In the control stage, the SD can be controlled

by any CP which joins the home Wi-Fi.

Chromecast. Google’s Chromecast allows streaming a video

to a TV. It comprises a CP, a receiver SD, and a Google’s

server (denoted by GS). The Chromecast SD also provides

an open Wi-Fi hotspot. In the discovery stage, the CP

joins SD’s hotspot and receives the device information (e.g.,

PublicKey) of the SD. In the authentication stage, the CP

sends the credentials of the home Wi-Fi to the SD over SD’s

hotspot. Once the SD has joined the home Wi-Fi, the CP uses

Multicast DNS (MDNS) to discover the SD. Further, to pair

the CP and the GS, the CP sends the ScreenID of the SD

to the GS. The GS responds to the CP with a token. In

the control stage, the CP uses this token to authenticate its

YouTube-video-casting requests with the GS.

B. Setup

Trace Capturing and Pre-Processing. We use 2.4 GHz

deRFusb23-E00 USB sniffing radio stick and Perytons An-

alyzer to capture ZigBee traces, and Wireshark tool to capture

the Wi-Fi traffic. We use Xposed framework [17] to obtain the

execution log of the Android app (i.e., the CP).

8
28

TABLE V: Summary of the Vulnerabilities

Misresponse

to Discovery

Request

Flawed

Authentication

Protocol

Lack of Au-

thorization

Use of Inse-

cure Underly-

ing Protocols

Unprotected

SD’s Wi-Fi

Hotspot

Lack of Device

or User Authenti-

cation Protocol

Vulnerable

to Network

Traffic Replay

Philips Hue 2 1 1 1 0 0 0

LIFX 0 0 0 0 2 1 1

Chromecast 1 0 0 0 1 1 0

PI Inference and LTS Representation. The detailed LTSs

for the three systems are available in the technical report [6].

Flaw Identification. HOMESCAN uses a model checker called

PAT [18] as the inference engine in these case studies. By

analyzing the LTS representations of the systems against the

attack models defined in Section II-B, HOMESCAN reports

twelve security flaws shown in Table V.

C. Results

HOMESCAN discovered seven categories of vulnerabilities.

Mis-response to Discovery Request. During the discovery

stage, participants send/receive discovery requests to identify

potential participants of the system. However, if a participant

fails to validate the source of discovery requests, it may in-

correctly respond to the attacker. HOMESCAN identifies three

vulnerabilities which belong to this category. First, Philips Hue

HS replies to discovery requests, from any UPnP (a known

flawed protocol [19]) enabled devices. Second, Philips Hue

ZFE always replies to the discovery requests from ZigBee

enabled devices. Third, the Chromecast SD replies to MDNS

discovery requests from any device in the home Wi-Fi.

Flawed Authentication Protocol. Due to the resource limita-

tions, smart home systems may adopt customized authentica-

tion protocols. This may result in flawed protocols. HOMES-

CAN identifies one vulnerability from Philip Hue which can be

exploited by a malicious CP. In the authentication stage, the

Philips Hue HS relies on the user to press the button on the

hub to enable the authentication token generation. However,

after the pressing, this protocol does not guarantee that the HS

only generates the token to the benign CP requests.

Lack of Control to Administration Commands. In the con-

trol stage, the CP is allowed to send administration commands,

such as adding/removing SDs. However, this permission

should be limited to authorized parties. HOMESCAN identifies

one vulnerability from Philips Hue—any CP authenticated

by the HS, instead of only the admin user, can re-configure

Philips Hue. This may lead to severe consequences, including

uncontrolled authentication and denial-of-service against both

the hub and the SD.

Use of Insecure Underlying Protocols. Smart home systems

typically rely on existing protocols, but some of them may

select an insecure one. HOMESCAN identifies such a vulner-

ability from Philips Hue, which uses ZLL for authentication.

However, ZLL is designed to allow a participant to reset the

established connection. In particular, after the SD and the hub

have established a connection though ZLL, the attacker can

send a NextworkJoinRequest to the SD to trigger it to re-

execute the protocol. After that, the attacker can impersonate

as a hub to establish another connection with the SD.

Unprotected SD’s Wi-Fi Hotspot. SDs may come with on-

board open Wi-Fi hotspots. These unprotected Wi-Fi hotspots

can be exploited by malicious participants at all stages of

the system. HOMESCAN identifies three vulnerabilities which

belong to this category. First, in the discovery stage of LIFX,

any CP which joins the SD’s hotspot can obtain the SD’s

configurations and forcefully connect the SD to an attacker’s

Wi-Fi. Another vulnerability of this category are found in the

CPs of the LIFX and Chromecast, which cause them to be

deceitfully connected to a fake SD’s hotspot. This vulnerability

leads to a severe consequence in LIFX’s authentication stage,

where the CP sends the credentials of the home Wi-Fi in plain

text so that the attacker can exploit this vulnerability to steal

these credentials.

Lack of Device or User Authentication Protocol. Due to

the resource limitations, smart home systems may be devel-

oped without any authentication protocol. These systems can

be exploited by malicious participants to take over control

or obtain sensitive information. HOMESCAN identifies two

vulnerabilities of this category. In the LIFX system, any CP

which joins the home Wi-Fi can control the SD. Similarly, but

with a serious consequence, a malicious CP in the Chromecast

system which joins the home Wi-Fi can obtain the VideoID
of a private YouTube video and cast it to the TV screen.

Vulnerable to Network Traffic Replay. The network packets

exchanged among participants over channels may not include

any session related data (e.g., timestamp and nonce). These

packets can be intercepted and later replayed by a network

attacker who taps on the communication channel. HOMESCAN

identifies one vulnerability which belong to this category. The

UDP packets sent by LIFX CP can be intercepted and replayed

by a network attacker to manipulate the victim SD.

VII. RELATED WORK

A. Specification Extraction

There exists different approaches [20], [21], [22], [23], [24]

to build the model of a system through static code analysis or

execution trace analysis. However, the existing approaches are

not directly applicable to the specification extraction of a smart

home systems, due to the challenge of partial availability of

the implementation. Hence, as a compliment to existing work,

we propose a hybrid approach in this work.

B. IoT Security

The research of IoT security mainly focuses on three

domains, i.e., IoT devices, protocols and platforms.

Security of IoT Devices. Ho et al. [25] present flaws in the

design of smart locks and show how they lead to unauthorized

home access. Fawaz et al. [26] propose a system that protects

9
29

BLE equipped devices from privacy leakages during the device

discovery. Das et al. [27] have discovered privacy leakage in

BLE network traffic of wearable fitness trackers.

Security of IoT Protocols. Ronen et al. [28] discover a worm

attack against Philips Hue lamps by exploiting the ZigBee pro-

tocol. Zilliner et al. [29] show that the actual implementations

of ZigBee certified smart devices have insufficient security

controls. Santos et al. [30] reveal the information leakage on

ZigBee network and propose countermeasures. Armknecht et

al. [31] discuss attacks on the ZLL by studying its specifi-

cations. Fouladi et al. [32] demonstrate that proprietary Z-

Wave protocol vulnerabilities could lead to remote unlocking

of locks. Siby et al. [33] propose IoTScanner which provides

an overview of operations in all observed wireless networks.

Choi et al. [34] develop an automatic spoofer tool which

reconstructs protocols over IEEE 802.15.4. Compared with

these studies, our work focuses more on the application layer

of the integration of such protocols which may introduce novel

attacks.

Security of IoT Platforms. Jia et al. [4] propose a context-

based permission system for applied IoT platforms. Fernandes

et al. [35] propose an approach to address how the sensitive

data processed by third party apps after obtaining the access.

Fernandes et al. [12] demonstrate that CP applications could

be exploited by evaluating the security design of Samsung

SmartThings framework. The existing studies mainly focus on

the application frameworks, which is part of our consideration

in our work.

VIII. CONCLUSION AND FUTURE WORK

We present HOMESCAN, a semi-automatic approach to ex-

tract the abstract specification of the application-layer protocol

and internal behaviors of smart home systems from their im-

plementations, whereby it is possible to conduct an end-to-end

security analysis against various practical attack models. Using

HOMESCAN, we have found twelve security vulnerabilities

from three real-world smart home systems. Our work has

demonstrated the necessity of considering the security issues

in IoT systems from the perspective of integration.

REFERENCES

[1] Y. Oren and A. D. Keromytis, “From the Aether to the Ethernet-

Attacking the Internet using Broadcast Digital Television,” in USENIX
Security, 2014, pp. 353–368.

[2] K. Townsend, “Attacking smart TVs ,” http://itsecurity.co.uk/2014/06/

attacking-smart-tvs/, 2017.

[3] Y. Michalevsky, S. Nath, and J. Liu, “Mashable: mobile applications of

secret handshakes over bluetooth le,” in MobiCom, 2016, pp. 387–400.

[4] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,

and A. Prakash, “Contexiot: Towards providing contextual integrity to

appified iot platforms,” in NDSS, 2017.

[5] R. M. Keller, “Formal verification of parallel programs,” Communica-
tions of the ACM, vol. 19, pp. 371–384, 1976.

[6] HomeScan. https://sites.google.com/view/homescandemo/home.

[7] Samsung SmartThings. http://www.samsung.com/us/smart-home/.

[8] HomeGenie. https://genielabs.github.io/HomeGenie/.

[9] “Zigbee light link standard version 1.0,” http://

www.newsroom.lighting.philips.com/news/2017/20170831-philips-

hue-marks-5th-birthday-with-new-products-and-entertainment-

capability, 2012.

[10] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an analysis of

security issues, challenges, and open problems in the internet of things,”

in IEEE SERVICES, 2015, pp. 21–28.

[11] T. Denning, T. Kohno, and H. M. Levy, “Computer security and the

modern home,” Communications of the ACM, vol. 56, pp. 94–103, 2013.

[12] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging

smart home applications,” in IEEE S&P, 2016, pp. 636–654.

[13] H. Ryu and J. Kwak, “Secure data access control scheme for smart

home,” in Ubicomp, 2015, pp. 483–488.

[14] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Security,

privacy and trust in internet of things: The road ahead,” Computer
Networks, pp. 146 – 164, 2015.

[15] O. Mouaatamid, M. Lahmer, and M. Belkasmi, “Internet of things se-

curity: Layered classification of attacks and possible countermeasures,”

Electronic Journal of Information Technology, 2016.

[16] P. den Dunnen. Philips. http://www.newsroom.lighting.philips.com/

news/2017/20170831-philips-hue-marks-5th-birthday-with-new-

products-and-entertainment-capability.

[17] Xposed. http://repo.xposed.info/.

[18] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towards flexible verification

under fairness,” in CAV, 2009, pp. 709–714.

[19] H. Moore, “Security flaws in universal plug and play: Unplug. dont

play,” https://hdm.io/writing/SecurityFlawsUPnP.pdf.

[20] T. D. B. Le and D. Lo, “Deep specification mining,” in Proceedings of
the 27th ACM SIGSOFT ISSTA. ACM, 2018, pp. 106–117.

[21] L. Mariani, M. Pezzè, and M. Santoro, “Gk-tail+ an efficient approach

to learn software models,” IEEE TSE, vol. 43, no. 8, pp. 715–738, 2017.

[22] T.-D. B. Le, X.-B. D. Le, D. Lo, and I. Beschastnikh, “Synergizing

specification miners through model fissions and fusions (t),” in IEEE
ASE, 2015, pp. 115–125.

[23] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun, Y. Liu,

and J. S. Dong, “Authscan: Automatic extraction of web authentication

protocols from implementations.” in NDSS, 2013.

[24] Q. Ye, G. Bai, K. Wang, and J. S. Dong, “Formal analysis of a single

sign-on protocol implementation for android,” in ICECCS, 2015, pp.

90–99.

[25] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,

“Smart locks: Lessons for securing commodity internet of things de-

vices,” in ASIACCS, 2016, pp. 461–472.

[26] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting privacy of ble device

users,” in USENIX Security, 2016, pp. 1205–1221.

[27] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering

privacy leakage in ble network traffic of wearable fitness trackers,” in

HotMobile, 2016, pp. 99–104.

[28] E. Ronen, A. Shamir, A.-O. Weingarten, and C. OFlynn, “Iot goes

nuclear: Creating a zigbee chain reaction,” in IEEE S&P, 2017, pp.

195–212.

[29] T. Zillner and S. Strobl, “Zigbee exploited: The good the bad and the

ugly,” in Black Hat, 2015.

[30] J. Dos Santos, C. Hennebert, and C. Lauradoux, “Preserving privacy in

secured zigbee wireless sensor networks,” in WF-IoT, 2015, pp. 715–

720.

[31] F. Armknecht, Z. Benenson, P. Morgner, and C. Müller, “On the

security of the zigbee light link touchlink commissioning procedure,”

in Gesellschaft für Informatik eV (GI), 2016, p. 229.

[32] B. Fouladi and S. Ghanoun, “Honey, i’m home !!-hacking z-wave home

automation systems,” in Black Hat, 2013.

[33] S. Siby, R. R. Maiti, and N. O. Tippenhauer, “Iotscanner: Detecting

privacy threats in iot neighborhoods,” in IoTPTS, 2017, pp. 23–30.

[34] K. Choi, Y. Son, J. Noh, H. Shin, J. Choi, and Y. Kim, “Dissecting

customized protocols: Automatic analysis for customized protocols

based on ieee 802.15.4,” in ACM WiSec, 2016, pp. 183–193.

[35] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and

A. Prakash, “Flowfence: Practical data protection for emerging iot

application frameworks,” in USENIX Security, 2016, pp. 531–548.

10
30

